0302463 Nuclear Physics

http://nuclear.bau.edu.jo/ju/ju-nuclear-undergrad

or

http://nuclear.dababneh.com/ju/ju-nuclear-undergrad Before we start, let us tackle the following:

- Why nuclear physics?
- Why radiation physics?
- Why in Jordan?
- Interdisciplinary.
- Applied.

This is a

phenomenological course.

General Course Content

- Nuclear properties.
- Binding energy and nuclear stability.
 - Spin, parity and moments.
 - Nuclear forces.
 - The structure of the nucleus.
 - Nuclear models.
 - Radioactive decays.
- Nuclear reactions: energetics and general cross-section behavior.

Grading

First Exam	25%
Second Exam	25%
Quizzes and HWs	10%
Final Exam	40%

- Homeworks are due after one week unless otherwise announced.
- Remarks or questions marked in red without being announced as homeworks should be also seriously considered!
- Some tasks can (or should) be sent by email.

Scales

Dimensional scale:

Order of magnitude of 1 x 10^{-15} m \equiv 1 femtometer \equiv 1 fm \equiv 1 fermi. Too small for direct investigation.

Time scale:

10⁻²⁰ s to millions of years.

Energy scale:

MeV

Mass:

- Unified atomic mass unit u based on ¹²C.
- Replaced both physical and chemical amu based on ¹⁶O and natural oxygen, respectively (Find conversion factors).

Scales

- •1 $u = M(^{12}C)/12 = \dots kg = \dots MeV/c^2$.
- Rest masses

<u>u</u>		MeV/c ²	<u>kg</u>	
electron				
proton				
neutron				
¹² C	12			

Atomic masses:

http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl?ele=&all=all&ascii=ascii&isotype=all Constants:

http://physics.nist.gov/cuu/Constants/index.html

Nomenclature

Chart of Nuclides

http://www.nndc.bnl.gov/chart/

Flement vs. Nuclide

>90 natural chemical elements, total > 100.

Element Atomic number (Z) chemically identical.

~3000 nuclides.....? How many are stable?

Same Z but different neutron number (N) ► Isotopes.

Total number of nucleons = $Z+N = A \triangleright mass number$.

$${}_{Z}^{A}X_{N}$$

 ${}_{Z}^{A}X_{N}$ ${}^{A}X$ ${}_{11}^{22}Na_{11}$ ${}^{23}Na_{11}$

Stable Radioactive

Same mass number ► Isobars ► chemically dissimilar, parallel nuclear features (Radius ...). β decay.

Same neutron number > Isotones.

Same Z and same A > Isomers > metastable.

Stable isotope ► (Isotopic) Abundance.

Radioactive isotope Half-life.

Stable Nuclides

<u>HW 1</u>

	Odd A		Odd A Even A		en A
Nuclide	N	Z	N	Z	

Then plot Z vs. N. Odd A Even A

Basic Calculations

The energy of the nucleon in the nucleus is in the order of 10 MeV.

HW 2 Calculate the velocity of a 10 MeV proton and show that it is almost 15% of the speed of light. (Perform both classical and relativistic calculations).

... Relativistic effects are not important in considering the motion of <u>nucleons</u> in the nucleus.

HW 3 Calculate the wavelength of a 10 MeV proton. Compare it to the nuclear scale.

HW 4 Calculate the wavelength for an electron of the same energy to show that it is much too large to be within the nucleus.

Read the proton-electron nuclear hypothesis! (Page 4)

Chadwick, neutron.